Latest News

Importance of Telecommunications in Research



INTRODUCTION

The Wireless Communication Networks (WCN) section focuses on teaching, research and innovation within the domain of wireless and wired communication and network technologies. The research field spans from the lowest to the highest layers in the OSI model, and from application-inspired basic research to more application-oriented where communication networks play a major role.

The research objective of the section is to conduct scientific investigations targeted at the development of novel efficient algorithms and methods in wired and wireless communications. The methodology includes the definition and study of mathematical frameworks and concepts, computer simulation of wired and wireless networks, and experimental investigation.

An important focus area is the development of future 5G wireless technologies, however, many activities in the section focus on the application of wired and wireless communication in the context of Smart Grid, Smart City, Intelligent Transport Systems and Mobile Network Evolution.
How important is telecommunications as an industry, and how important is telecommunications research to the overall health of that industry? Underlying these questions are several others. How important is telecommunications to the U.S. economy and society? To what extent are U.S. consumers likely to benefit directly from telecommunications research in terms of new products and services that enhance their lives or improve their effectiveness or productivity? How much scope for innovation is there left in telecommunications, or has telecommunications matured to the point that it is merely a commodity service or technology?

The core findings of this study—which are supported throughout this report—are that the telecommunications industry remains of crucial importance to the United States as a society, that a strong telecommunications research capability continues to be essential to the health and competitiveness of this U.S. industry internationally, and that the health of this industry strongly affects the U.S. economy in many ways.

TELECOMMUNICATIONS—AN EVOLVING DEFINITION

Before the emergence of the Internet and other data networks, telecommunications had a clear meaning: the telephone (and earlier the telegraph) was an application of technology that allowed people to communicate at a distance by voice (and earlier by encoded electronic signals), and telephone service was provided by the public switched telephone network (PSTN). Much of the U.S. network was owned and operated by American Telephone & Telegraph (AT&T); the rest consisted of smaller independent companies, including some served by GTE.

Then in the 1960s, facsimile and data services were overlaid on the PSTN, adding the ability to communicate documents and data at a distance—applications still considered telecommunications because they enabled new kinds of communication at a distance that were also carried over the PSTN. More recently, of course, communication at a distance has expanded to include data transport, video conferencing, e-mail, instant messaging, Web browsing, and various forms of distributed collaboration, enabled by transmission media that have also expanded (from traditional copper wires) to include microwave, terrestrial wireless, satellite, hybrid fiber/coaxial cable, and broadband fiber transport.

Today consumers think of telecommunications in terms of both products and services. Starting with the Carterphone decision by the Federal Communications Commission in 1968,1 it has become permissible and increasingly common for consumers to buy telecommunications applications or equipment as products as well as services. For example, a customer-owned and customer-installed WiFi local area network may be the first access link supporting a voice over Internet Protocol (VoIP) service, and a consumer may purchase a VoIP software package and install it on his or her personally owned and operated personal computer that connects to the Internet via an Internet service provider.
The technologies used for telecommunications have changed greatly over the last 50 years. Empowered by research into semiconductors and digital electronics in the telecommunications industry, analog representations of voice, images, and video have been supplanted by digital representations. The biggest consequence has been that all types of media can be represented in the same basic form (i.e., as a stream of bits) and therefore handled uniformly within a common infrastructure (most commonly as Internet Protocol, or IP, data streams). Subsequently, circuit switching was supplemented by, and will likely ultimately be supplanted by, packet switching. For example, telephony is now routinely carried at various places in the network by the Internet (using VoIP) and cable networks. Just as the PSTN is within the scope of telecommunications, so also is an Internet or cable TV network carrying a direct substitute telephony application.

Perhaps the most fundamental change, both in terms of technology and its implications for industry structure, has occurred in the architecture of telecommunications networks. Architecture in this context refers to the functional description of the general structure of the system as a whole and how the different parts of the system relate to each other. Previously the PSTN, cable, and data networks coexisted as separately owned and operated networks carrying different types of communications, although they often shared a common technology base (such as point-to-point digital communications) and some facilities (e.g., high-speed digital pipes shared by different networks).

How are the new networks different? First, they are integrated, meaning that all media— be they voice, audio, video, or data—are increasingly communicated over a single common network. This integration offers economies of scope and scale in both capital expenditures and operational costs, and also allows different media to be mixed within common applications. As a result, both technology suppliers and service providers are increasingly in the business of providing telecommunications in all media simultaneously rather than specializing in a particular type such as voice, video, or data.

Second, the networks are built in layers, from the physical layer, which is concerned with the mechanical, electrical and optical, and functional and procedural means for managing network connections to the data, network, and transport layers, which are concerned with transferring data, routing data across networks between addresses, and ensuring end-to-end
connections and reliability of data transfer to the application layer, which is concerned with providing a particular functionality using the network and with the interface to the user.

Both technology (equipment and software) suppliers and service providers tend to specialize in one or two of these layers, each of which seeks to serve all applications and all media. As a consequence, creating a new application may require the participation and cooperation of a set of complementary layered capabilities. This structure results in a horizontal industry structure, quite distinct from the vertically integrated industry structure of the Bell System era.

All these changes suggest a new definition of telecommunications:Telecommunications is the suite of technologies, devices, equipment, facilities, networks, and applications that support communication at a distance.

The range of telecommunications applications is broad and includes telephony and video conferencing, facsimile, broadcast and interactive television, instant messaging, e-mail, distributed collaboration, a host of Web- and Internet-based communication, and data transmission.3 Of course many if not most software applications communicate across the network in some fashion, even if it is for almost incidental purposes such as connecting to a license server or downloading updates. Deciding what is and is not telecommunications is always a judgment call. Applications of information technology range from those involving almost no communication at all (word processing) to simple voice communications (telephony in its purest and simplest form), with many gradations in between.
As supported by the horizontally homogeneous layered infrastructure, applications of various sorts increasingly incorporate telecommunications as only one capability among many. For example telephony, as it evolves into the Internet world, is beginning to offer a host of new data-based features and integrates other elements of collaboration (e.g., visual material or tools for collaborative authoring). Another important trend is machine-to-machine communication at a distance, and so it cannot be assumed that telecommunications applications exclusively involve people.

THE IMPORTANCE OF CONTINUING INVESTMENT IN TELECOMMUNICATIONSRESEARCH: SUMMARY COMMENTS
Telecommunications research is best understood as a seed that germinates, developing into lasting value for the U.S. economy. Figure 1.1 depicts the research ecosystem and the
7    D. Messerschmitt, “Convergence of Computing and Telecommunications: What Are the Implications Today?” Proceedings of the IEEE, 84(8):1167-1186, 1996.
8    Computer Science and Telecommunications Board, National Research Council, Making IT Better: Expanding Information Technology Research to Meet Society’s Needs, National Academy Press, Washington, D.C., 2000.

benefits it enables, many of which are built up recursively over time as a result of interactions among the various levels. The picture is, to be sure, simplified—the interactions between the different elements are more complex than can be reasonably characterized by the diagram— but Figure 1.1does provide a realistic view of the impacts of research.

Shown at the top of Figure 1.1 is the research enabled by available funding. Level 1 shows the direct results: Researchers conduct exploratory studies, achieving technical breakthroughs and developing their expertise and their basic understanding of the areas studied. Talent is thus nurtured that will be expressed in the future in industry and academia. None of these results of research can be characterized as end benefits. Rather, the development of talent and the achievement of breakthroughs build a capability for later revolutionary advances.

At Level 2 the benefits of research begin to become evident. Researchers collaborate, and individual insights and results begin to fit together. The university talent generated in Level 1 develops competence—not simply low-level job skills that can be easily transported anywhere, but rather the next-generation expertise needed to ensure a skilled U.S. telecommunications workforce. The United States has access to this skilled workforce first and can thus benefit directly from the talent and knowledge base generated in Level 1 that are fundamental to continuing technological advances and being able to perform in the best future jobs.

Also at Level 2 comes the maturing of fundamental breakthroughs and their transition to usable, deployable technology for next-generation telecommunication systems and the development of roadmaps to help guide research investments.

No comments